May 16, 2020

Tasmania takes action to help local construction industry

Tasmania
Australia
buy local
Admin
1 min
Tasmania takes action to help local construction industry
The Australian government said that it is committed to helping the building and construction sector to invest, grow and create jobs. The industry employ...

The Australian government said that it is committed to helping the building and construction sector to invest, grow and create jobs. The industry employs more than 16,000 people across the state.

“We have listened to the industry, including the Master Builders Association of Tasmania, who asked for a future procurement schedule to be made public so that the sector can plan for upcoming government work,” said Treasurer Peter Gutwein. “This will assist industry improve business participation opportunities in government building projects.”

The value of future procurement listed on the schedule amounts to around $140m.

This helps smaller construction firms to plan for large projects that come up for tender. There’s a lot construction work going on in Tasmania at the moment and plenty more in the pipeline. The publishing of the procurement schedule means that the building and construction sector can plan for these projects and upskill where necessary.

Other Government initiatives, such as the Buy Local Policy, are also helping Tasmanian business access government contracts.

During the past four quarters, the number of Tasmanian companies bidding for government tenders increased from 63.11% to 70.09.

When Tasmanian companies have bid, in 92% of cases contracts have been awarded locally - representing an increase of more than 9% in 12 months. The monetary value contacts awarded to Tasmanian companies has grown by about 30%.

Follow @ConstructionGL

Share article

Jun 17, 2021

Why engineers must always consider human-induced vibration

Vibrations
Engineering
design
Structuralintegrity
Dominic Ellis
3 min
Human-induced vibration can lead to a number of effects upon the structure and its users

Human induced vibration, or more accurately vibrations caused by human footfall, often conjures images of Millennium Bridge-style swaying or collapsing buildings.

But in reality, the ‘damage’ caused by human-induced vibrations is less likely to ruin a structure and more likely to cause discomfort in people. Though not as dramatic as a structural failure, any good engineer wants to make sure the people using their structures, be it bridges or buildings or anything in between, can do so safely and comfortably. This is why human-induced vibration must be considered within the design process.

Resonance v Impulse

There are two ways that human-induced vibrations affect structures: resonant, and impulse or transient response. Put simply, resonance occurs when Object A vibrates at the same natural frequency as Object B.

Object B resonates and begins to vibrate too. Think singing to break a wine glass! Although the person singing isn’t touching the glass, the vibrations of their voice are resonating with the glass’s natural frequency, causing this vibration to get stronger and stronger and eventually, break the glass. In the case of a structure, resonance occurs when the pedestrian’s feet land in time with the vibration.

On the other hand, impulse or transient vibration responses can be a problem on structures where its natural frequencies are too high for resonance to occur, such as where the structure is light or stiff. Here the discomfort is caused by the initial “bounce” of the structure caused by the footstep and is a concern on light or stiff structures.

Engineers must, of course, design to reduce the vibration effects caused by either impulse or resonance.

Potential impacts from human induced vibration

Human induced vibration can lead to a number of effects upon the structure and its users. These include:

  • Interfering with sensitive equipment Depending on the building’s purpose, what it houses can be affected by the vibrations of people using the building. Universities and laboratories, for example, may have sensitive equipment whose accuracy and performance could be damaged by vibrations. Even in ordinary offices the footfall vibration can wobble computer screens, upsetting the workers.
     
  • Swaying bridges One of the most famous examples of human-induced resonance impacting a structure occurred with the Millennium Bridge. As people walked across the bridge, the footsteps caused the bridge to sway, and everybody had to walk in time with the sway because it was difficult not to. Thankfully, this feedback can only occur with horizontal vibrations so building floors are safe from it, but footbridges need careful checking to prevent it.
     
  • Human discomfort According to research, vibrations in buildings and structures can cause depression and even motion sickness in inhabitants. Tall buildings sway in the wind and footsteps can be felt, even subconsciously by the occupants. It has been argued that modern efficient designs featuring thinner floor slabs and wider spacing in column design mean that these new builds are not as effective at dampening vibrations as older buildings are.
     
  • Jeopardising structural integrity The build-up of constant vibrations on a structure can, eventually, lead to structural integrity being compromised. A worse-case scenario would be the complete collapse of the structure and is the reason some bridges insist that marching troops break step before crossing. Crowds jumping in time to music or in response to a goal in a stadium are also dynamic loads that might damage an under-designed structure.

How to avoid it

As mentioned, modern designs that favour thinner slabs and wider column spacing are particularly susceptible to all forms of vibration, human-induced or otherwise, but short spans can also suffer due to their low mass. Using sophisticated structural engineering software is an effective method for engineers to test for and mitigate footfall and other vibrations at the design stage.

Share article